The adult mouse subependymal zone regenerates efficiently in the absence of tenascin-C.

نویسندگان

  • Ilias Kazanis
  • Aisha Belhadi
  • Andreas Faissner
  • Charles Ffrench-Constant
چکیده

The subependymal zone (SEZ) of the lateral ventricles of the adult mouse brain hosts neurogenesis from a neural stem cell population with the morphology of astrocytes (termed type-B cells). Tenascin-C is a large extracellular matrix glycoprotein present in the SEZ that has been shown to regulate the development of embryonic neural stem cells and the proliferation and migration of early postnatal neural precursors. Here we show that tenascin-C is produced by type-B cells and forms a layer between SEZ and the adjacent striatum. Tenascin-C deficiency resulted in minor structural differences in and around the SEZ. However, the numbers of neural stem cells and their progeny remained unaffected, as did their regeneration after depletion of mitotic cells using the antimitotic drug cytosine-beta-D-arabinofuranoside. Our results reveal a remarkable ability of the adult neural stem cell niche to retain proper function even after the removal of major extracellular matrix molecules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multipotent stem/progenitor cells with similar properties arise from two neurogenic regions of adult human brain.

Recent in vitro studies have shown that the periventricular subependymal zone (SEZ) of the rodent brain is capable of de novo generation of neurons and glia. There is less information available on neurogenesis in the adult human brain, and no study has shown the clonal generation of neurons and glia from in vitro-generated "neurospheres." Here we describe the isolation of proliferative stem/pro...

متن کامل

The adult mouse dentate gyrus contains populations of committed progenitor cells that are distinct from subependymal zone neural stem cells.

There is currently a debate as to whether or not a neural stem cell (NSC) exists in the adult mammalian hippocampus. Clonal colony-forming assays allow single cells to cells to be evaluated for stem cell properties: self-renewal and multipotentiality. In these in vitro assays, single cells from the subependymal zone (SEZ) of the adult lateral ventricle yield large colonies which self-renew and ...

متن کامل

Postmitotic death is the fate of constitutively proliferating cells in the subependymal layer of the adult mouse brain.

The early development of the mammalian forebrain involves the massive proliferation of the ventricular zone cells lining the lateral ventricles. A remnant of this highly proliferative region persists into adult life, where it is known as the subependymal layer. We examined the proliferation kinetics and fates of the mitotically active cells in the subependyma of the adult mouse. The medial edge...

متن کامل

A Specialized Microvascular Domain in the Mouse Neural Stem Cell Niche

The microenvironment of the subependymal zone (SEZ) neural stem cell niche is necessary for regulating adult neurogenesis. In particular, signaling from the microvasculature is essential for adult neural stem cell maintenance, but microvascular structure and blood flow dynamics in the SEZ are not well understood. In this work, we show that the mouse SEZ constitutes a specialized microvascular d...

متن کامل

Subependymal Zone-Derived Oligodendroblasts Respond to Focal Demyelination but Fail to Generate Myelin in Young and Aged Mice

Two populations of oligodendrogenic progenitors co-exist within the corpus callosum (CC) of the adult mouse. Local, parenchymal oligodendrocyte progenitor cells (pOPCs) and progenitors generated in the subependymal zone (SEZ) cytogenic niche. pOPCs are committed perinatally and retain their numbers through self-renewing divisions, while SEZ-derived cells are relatively "young," being constantly...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 27 51  شماره 

صفحات  -

تاریخ انتشار 2007